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In this paper we describe the implementation and development of a new Taylor—
Galerkin finite-element scheme within an unstructured/hybrid, parallel solver. The
scheme has been specifically conceived for unsteady LES: it is third-order in space
and time and has a low dissipative error. Minimal additional CPU costs are achieved
by using a new approximation of the finite-element integrals and a simple iterative
method for the approximate inversion of the modified mass matrix. Basic convective
tests are carried outin 2 and 3 dimensions for arbitrary elements. Numerical estimates
of the order of convergence are presented on regular and perturbed grids. Finally,
test cases that are relevant to LES are carried out, and these clearly demonstrate the
importantimprovements that our new scheme offers relative to a selection of existing
methods. @ 2000 Academic Press
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1. INTRODUCTION

For large eddy simulations of turbulence (LES), the quality of a computation is knov
to be as dependent on the accuracy of the numerical scheme and the computational me
on the LES model itself [1]. A poor mesh resolution and the use of a low-order scheme «
contribute dramatically to the dissipation of eddies (through numerical dissipation erro
and to the distortion of their form (through numerical dispersion errors). For compls
geometries, when unstructured or structured multi-block grids are required, the simplest

! Present address: IFR 2-av. du Bois, Rrau, 92852 Rueil-Malmaison, France. E-mail: Olivier. COLIN@ifp.fr.

338

0021-9991/00 $35.00
Copyright(© 2000 by Academic Press
All rights of reproduction in any form reserved.



TAYLOR-GALERKIN SCHEMES FOR LES 339

most common way to achieve the required level of accuracy is to use a relatively low-or
finite-volume or finite-element scheme with a very fine mesh (see, e.g., [2]). Although 1
results of such computations may be impressive, the approach can be extremely costl

This requirement for accuracy leads us to consider high-order methods, since the total
of a calculation is likely to be lower if we increase the order of the numerical scheme rat
than increasing the number of mesh points used. Indeed, the argument becomes even
convincing for three-dimensional problems. In practice, however, we need to ensure tha
computational overhead generated by the high-order scheme is reasonably low. High-c
spectral [3] or finite-difference [4] methods for structured grids have been successful
simple geometries because the overhead is small compared to the gain in accuracy. Re
schemes have been generalized to unstructured meshes (e.qg., [5]), but they become
more expensive due to the high-order quadrature that is needed and/or the increased
overheads associated with the larger stencils required.

For convection problems, third- or fourth-order Galerkin/Runge—Kutta finite-eleme
schemes that use linear elements and Runge—Kutta time-stepping may easily be de
(we denote these as G/RK3 and G/RK4, respectively). Despite their simple formulati
these schemes suffer from some important shortcomings, namely that their accuracy d
dramatically on distorted meshes, and they do not dissipate node-to-node oscillations w
may lead to spurious wave packets and cause instabilities on highly irregular meshes
To some extent, both problems may be alleviated using an artificial viscosity method |
although the definition of suitable models is not straightforward, and those used in
literature are often too dissipative for unsteady applications.

Of all of the finite-element schemes [8], the Taylor—Galerkin (TG) family seems 1
be one of the best candidates for obtaining third (or higher) order at a reasonable cos
well as being suitable for nonlinear problems in higher space dimensions. Such scheme
generally less dissipative than commonimplementations of SUPG/Petrov—Galerkin or le
square schemes. Taylor—Galerkin schemes were originally derived by Donea [9] and |
been extensively used for CFD computations over the last two decades. Donea [9] perfor
third- and fourth-order temporal Taylor expansions within the Galerkin formulation that I¢
to a one-step third-order scheme called Euler-Taylor—Galerkin (ETG). This scheme 1
generalized to two-step schemes of third- and fourth-order (TTG3, TTG4A, TTG4B) |
Quartapelle and Selmin [10]. Unlike the G/RK3 scheme, all of these schemes exhibit leac
order dissipative terms which naturally damp node-to-node oscillations. However, they
more dissipative than G/RK3 across the whole frequency spectrum. Recent work by O
etal.[11, 12] has demonstrated how Taylor—-Galerkin schemes of order “2s” may be defil
using “s” stages to achieve unconditional stability. Although these schemes may prov
be useful, they are not considered here because of the complexity and the cost involve
using adaptative hp-finite-elements.

In the present paper we shall describe a third-order Taylor—Galerkin approach for ¢
vective terms, that is both simple, effective, and, most importantly, well-suited for LE
The basic idea of LES is to resolve large-scale turbulent structures, which are dynamic
more important, and then to simulate the action of scales smaller than the mesh size &
appropriate eddy viscosity model (see [13] for a review of such models). For an ideal L
calculation it is the combination of laminar and LES viscosity that is supposed to be
sole mechanism for the transfer of energy to the sub-grid level through the dissipatior
high frequencies. Unfortunately many schemes exhibit large amountsneéricaldiffu-
sion at high frequencies and this can have a disastrous effect on LES since it allows en
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to be transferred independently of the LES model itself. As a result, a convective sche
that is well-suited to LES must have minimal dissipation at high frequencies. Fortunate
high-frequency dispersive errors have a much smaller effect on any larger-scale structt
these modes have very short life-spans as they are effectively dissipated by turbulent
cosity and so are convected over relatively short distances. On the other hand the large !
structures themselves must be convected with both low dispersive and dissipative er!
For practical evidence of this, see Morinishi [14], who shows that non-dissipative scher
perform better than dissipative schemes on turbulent LES channel flow calculations.

Finally, we note that our aim is to compute turbulent flows in complex geometries usi
an existingparallel solver [15], and so our approach has been reasonably pragmatic:
algorithm needed to be scalable and very easy to implement within a distributed-mem
environment (requiring a compact stencil, and avoiding the use of state-of-the-art itera
solvers which would be needed to ensure scalability when inverting any complicated sp:
matrix systems); it also needed to be applicable to arbitrary element types. The ove
design constraint was that the cost per time-step had to be limited to two or three times
of the existing second-order cell-vertex finite-volume schemes that are described in [1°

The format of the paper is as follows. In Section 2 we describe the Taylor—Galerl
(TG) schemes of Donea, Selmin, and Quartapelle and propose a new scheme for the
dimensional advection equation that is suitable for the type of application we have in mil
In Section 3 we generalize these TG schemes for the Euler equations in two and thre«
mensions. We explain how the integrals appearing in the formulation can be approxime
by an original method that is cheaper than well-known quadrature approaches, while m
taining discrete conservations. In Section 4 we give numerical results for basic convec
problems. Numerical estimates of the order of accuracy of these schemes are given,
we describe basic test cases relating to 3D homogeneous isotropic turbulence. As the
of the paper is to describe the scheme in detail, we do not consider the implementatio
boundary conditions or give results for more challenging test cases, although we inten
report on this in future publications.

2. TAYLOR-GALERKIN SCHEMES FOR THE ONE-DIMENSIONAL
ADVECTION EQUATION

2.1. The ETG Scheme

The Euler—Taylor—Galerkin (ETG) scheme was the first third-order TG scheme propo:
by Donea [9]. We derive it here for the 1D advection equation,

U = —CUy, XeQ, 1)

wherec is a constant, and suitable initial and boundary conditions are imposed. The met
is based on a third-order Taylor expansion in time,
untl —yn At At?

=W S Ul 0at), )

which is that used by the classical Lax—Wendroff scheme with a third derivative term adc
on the right-hand side. The second derivatiyés replaced by a second derivative in space
using Eq. (1) twice,

Ut = (—CUy)t = —C(U)x = C?Uxx. (3)
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The third-order derivative is then approximated in a hybrid manner using forward Eu
time-stepping,

n+1 n
2 2 u —u
Uyt = C7(U ~c| —— . 4
it (Up)xx ( At >XX 4)

Afterreplacing all temporal derivatives by spatial derivatives, this results in the semi-discr
form,

C2At2 uttl —yn At
(1— 5 axx>< AT ): —cuy + > Uy (5)

To obtain a fully discrete approximation, the Galerkin method is applied to the abc

equation,
C2At? uttl —yn C2At
<<1_ 6 8><><> (T>’¢I> = <—CUQ+ Tugx’ ¢i>s (6)

where(a, b) denotes thd., inner productfab dV, andg; is a test function taken from a
suitably chosen finite-element subspaceR Afinite element approximation is obtained by
integrating (6) by parts and choosing piecewise linear functions satisfying

(X)) = &
ZCIDj(x)zl, VX e Q,
j

wherex; = X + i Ax denotes a mesh coordinate (limiting our present discussion to regu
meshes). This finally gives the discrete scheme for the nodal véllies

C? 1
[M — F52](uj“+1 —U') = —CAqU] + Eczazu-“, @

whereC = cAt/Ax is the Courant number)o, 82 are the centred first- and second-ordet
spatial differencing operators, and M is the mass-matrix,

1
AoUj = E(Uj+1_uj—l) 8
82U =Uj1—2U; +Uj 4 9)
1
MU; =B(Uj+1+4Uj+Uj_1). (20)

2.2. TTG3 and TTG4A Schemes

In [16], Doneaet al. carried out the 2D stability analysis of the ETG scheme for bilinea
elements. They found that although the CFL condition r&aesl in 1D, it become€ < %
in 2D andC < % in 3D, whereC is now the CFL number based on the wave speed in a give
direction and the maximum distance across the cell in that direction. To overcome t
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Selmin and Quartapelle [10, 17], proposed a family of two-step Taylor—Galerkin schen
called TTG. These are derived from the two-step approximation

1
" =u"+ éAtu{‘ + aAt?uf), (12)
n+1 n n 1 2~n
umt =u" 4 Aty + EAI Gy, (12)

which also avoids the need for a modified mass matrix such as that found in the ETG sch
(7). On regular meshea,= % gives a third-order scheme called TTG3 whose phase err
is exactly that of the ETG scheme; the choice- liz gives a fourth-order scheme called
TTG4A. The stability limitisC < 0.854 for TTG3 an < 1 for TTG4A for all dimensions.
Thus, the higher cost per time-step of these two-step methods may be off-set by the la
time-step that is allowed. Quartapelle and Selmin also carried out 1D and 2D test case
[10] and showed that the TTG schemes give solutions that are very similar to those of
ETG scheme.

2.3. TTGC Schemes

Unfortunately, we have found that the ETG and TTG schemes are too dissipative at in
mediate and high frequencies and that these schemes are therefore unsuitable for pra
LES applications. As a result, a new class of two-step Taylor—Galerkin schemes has t
developed that gives third-order accuracy with less overall dissipation.

We consider the six parameter family of schemes,

0" = u" o Atul + ALY, (13)
U™t = u" + At(01U] + 6,00) + At? (U} + €207). (14)
We note that it is possible to move the second-order derivative terms of (13) and (14
the left-hand side and to treat these terms within a modified mass matrix, in a man
analogous to the definition of the ETG scheme or the multi-step schemes derived by O
et al.[11, 12]. This approach can lead to fourth-order schemes, and even uncondition:
stable schemes, although it can be much more expensive to implement and so will ng
considered here.

After discretising the above equations using linear elements and the Galerkin sche
we perform a Fourier transform which gives the amplification factor

7(p) =1+ %(—acﬁo + BC25?), (15)

1 ~ "
2(p) =1+ = (—(O1+ 0,2)CAg + (€1 + €22)C?5?), (16)

whereAg, §2, M, are the Fourier transforms afo, §2, M given by the equations (see (8),
(9), and (10))

Ao(p) = | sin(p),

2
22 _ . E
8°(p) = 4(S|n(2)> ,

M(p) =1 2sin P\
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andp = kAx s the non-dimensional frequency. A Taylor expansion to third ordpigives
z(p) = 1— & 1Cp — &C?p? + a3l C3p® + o(p), (17)
with

a = 01+ 07,

p=e+e+all-~06),
1
8 = Sa(l—2e1) + (1= 00)(B — o),
and we note that a third-order accurate scheme requires the coeffgiemtatisfya; = Il,
fori =1, 2, 3. Clearly, the two-step Taylor—-Galerkin schemes described in Subsection
satisfy these conditions—for instance, the TTG4A scheme is defirmehb%/, B= 112 0=
1,0,=0,¢,=0, and62= %

We now have three equations and six free parameters, and so additional constraints
to be imposed. The dissipative property of the scheme can be assessed by determinin
dissipation of the amplification factor at the highest mesh frequeney: . In this case, we
have

. . . 1
Ao(m) =0, () =—-4, M(r)= 3
andz(r) is given exactly by
Z(7) = 1 — 12C?[e1 + e2(1 — 128C?)].

It can be seen that settirg= ¢, = 0 leads to no dissipation at all for this mo@gr) = 1),
asisthe case for well-known Galerkin/Runge—Kutta schemes. Thus, atleast one of thes
coefficients has to be non-zero in order to keep a minimum dissipation at high frequenc
As our aim is to derive a third-order scheme that is as cheap as possible, with |
dissipation than those described in the previous section, we make the following choice

e We demand that the second derivative tegpibe calculated only once per time-step.
If we wish to keep a dissipative-like term at both steps of the iterafiaannot be zero so
Uy has to be calculated during the first step apdan be set to zero.

e We impose the conditios, =0 since we also wish to avoid the additional cost of
storinguf’ from step one to step two (it may also be shown thdtas little practical effect
on the phase and dissipative properties of the scheme).

Settingy = €3, with 6; =0 ande, = 0, the three initial constraints now become

1 1
=——y, =, 18
a=5-y. PB=g (18)
and the two-step scheme reads
0" = u" + e Atul + BALAUY, (19)
utl = u" 4 ALY + y At2UD. (20)

Equations (19) and (20) define a family of schemes that depend on a single paramets
which may be interpreted as a measure of the dissipation at high frequencies, as show
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0.980

G—Oy =0 TTGC(0)
X--Xv =001 TTGC(0.01)
H--Ely =0.1 TTGC(0.1)
&—y =05 TTGC.5)
0.960 |

0.940 . L . L . L . ;
0.00 0.20 0.40 0.60 0.80 1.00
p/n

FIG. 1. Dissipation error of different TTGC schemes at CED.1.
the amplification factor at the maximal frequengy =,
z(r) = 1— 12y C2.

As y tends to zero, the dissipation of high frequency modes also tends to zero, as sh
graphically in Fig. 1. Ify =0, the second step of the scheme is formally identical to a ste
of a multi-step Galerkin scheme, leading to the node-to-node oscillations discussed in
Introduction. Figure 2 shows that the dispersion error is nearly independgnabfeast at
low CFL numbers. Figure 3 shows the maximum CFL condition in 1Dfar{0, 1]. It can

be seen that in practice only small valuegafo < y < 0.2) lead to acceptable CFL limits.
Negative values of lead to an instable scheme.

08

0.6

G—Ey =0.  TTGCO.)
Xy =001 TTGC(0.01)
Oy =01 TTGCO.1)

04 - Oy =05 TTGCO.5) ) i
02 | |
0.0 ' ' * ]
0.00 0.20 0.40 0.60 0.80 1.00
p/n

FIG. 2. Dispersion error of different TTGC schemes at GFD.1.
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1.1 T T T

max CFL

Y

FIG. 3. TTGC(y) stability domain for the 1D advection equation wjtke [0, 1].

Finding a singleoptimalvalue fory across all CFL numbers has not been addressed
the present work because it is somewhat difficult to define precisely what is meant by
in the context of LES calculations (where dissipation is needed for non-linear stability |
an excess of dissipation strongly degrades the turbulence characteristics).

Numerically, we have found that8y < 0.05 gives a much less dissipative scheme tha
FV/LW, ETG, or TTG4A over the whole frequency spectrum for small CFL numbers (e
can be seen in Fig. 4) whereas it is comparable to other third-order TG schemes for |
CFL numbers and long to intermediate wavelengths (see Fig. 5). Nonetheless; fbthe
scheme remains more dissipative at high frequencies than the three-step Galerkin sct
as shown by the numerical tests of Section 4. The dispersion error is very similar to 1
of other TG schemes, especially at low CFL numbers (see Figs. 6 and 7) and bring

0.980 | . I
\
\
— \
O--OETG \
0.960 3 ~EITTG4A i .
¥k TTGC(0.01)
W -V G/RK3 \g
\
0.940 : . , , =
0.0 0.2 0.4 0.6 058 1.0
p/in

FIG. 4. Dissipation error of LW and TG schemes at GEI0.1.
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F—KTTGC(0.01) s
04 V-~ VG/RK3 A |
02 f N
Q
0.0 . , . | :
0.0 02 04 06 0.8 10
pin

FIG. 5. Dissipation error of LW and TG schemes at CEI0.7.

clear improvement over FV/LW or FV/RK3 schemes. In the following we will denote th
generic formulation as TTGC (following the naming convention adopted for the TTG4A ai
TTG4B schemes of Quartapeli¢al); TTGC(y') will refer to the particular casg =y'.

3. MULTI-DIMENSIONAL TTG SCHEMES FOR THE EULER EQUATIONS

3.1. General Formulation

We now consider the three-dimensional Euler equations written in conservative form

UW+V-F= 1)
10200506
08 I ]
06 I ]
04 | GC—OETG .
O—E1TTG4A
K—KTTGC(0.01) ‘
V—Y/G/RK3
02 |
0.0 1 L 1 L il
0.0 02 0.4 06 08 10

p/n

FIG. 6. Dispersion error of LW and TG schemes at CED.1.



TAYLOR-GALERKIN SCHEMES FOR LES 347

2.0 ' ‘ '
e S YA
G—OETG
C—EITTG4A
15 KK TTGC(0.01)

3/ G/RK3

0.5

0.0 il 1 il
0.0 0.2 0.4 0.6 0.8 10
p/n

FIG. 7. Dispersion error of LW and TG schemes at CED.7.

with u™ = (p, pu1, puy, pus, pE), wherep is the densityg™ = (uy, Uy, uz) denotes the
velocity field, E is the total energy per unit mass, aRd= (f, g, h) is the 5x 3 matrix of
inviscid fluxes. Replacing the temporal derivatives of Egs. (19) and (20) using (21) and

Ut = —(V-F)y ==V -F =V.((A B,C)uy), (22)
whereA, B, C are the 5« 5 flux Jacobians,
of d oh
AW=SL BU =l CW=s (23)
we finally obtain
0" = u" — AtV - F" + BAt2V - [(A, B,C)(V - FM)], (24)
U™l =u" — AtV - F" 4 y At2V - [(A, B,C)(V - FM)], (25)

where the divergenc® - F = fy +gy+h; is a 5x 1 matrix and(A, B,C)(V-F)=
(AV-F,BV-F,CV.-F)isabx 3 matrix.

After applying the Galerkin method to Egs. (24) and (25) and integrating the second-or
operator by parts, the scheme becomes

/ R'®; dV = —aLi(U") — BAtLL; (UM, (26)
Q
/R”+1d>idV: “Li 3" — yAtLL; (UM, (27)
Q
with
g Un-u"
At
Rn+l — Un+l —u"
At ’

Li(U™) = / V. FU"®; dV, (28)
Q
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LLi(U")z/(A, B,C)V'F(U”)VQidV—/ ®i(A,B,COV-FUMNAS (29)
Q aQ

where the surface vectdiSis 3 x 1 matrix and we have chosen suitable scalar test functior
®;. U, U are expressed as a sum of these test-functions, e.g.,

U"(x) = @)U,

: (30)
R'0) =) @ (0R,

i

and the left-hand side of (26) then becomes

/ R'®dV =" (/ DD, dV) R
Q i Q
= Z Mi; R}
]

The TTG scheme may be rewritten in matrix form, with, U", R", R™! now designating

the vectors of nodal values, and M the mass-matrix,
MR" = HUM), (31)
MR™! = HU", 0", (32)

with H andH defined as

HU™ = —aL(U") — BAtLL@UM,
HU", U™ =—LU" — yAtLLU").

As the CFL condition for TTGC is less than one, the number of time-steps required
a typical LES will be very large. This makes the CPU cost per iteration a crucial factor f
this scheme, as for all explicit time-stepping schemes. The exact inversion of the (posit
definite) mass-matrix M would involve storing a large full matrix and is therefore not of pra
tical interest, especially for unstructured meshes; instead we report to approximate inver
techniques using a very simple iterative method. In [9], Donea proposed a two-step exp
version which remains third-order and nearly preserves the phase accuracy of the oric
one-step implicit version. This involves approximating the matrix inversion by the wel
known Jacobi method. Similarly, thestep explicit version of the TTGC scheme become:

(RHY® = D TH UM,

RHY = (R - D} M - D)(RHY™, k=1 p,
(RO — p-1y (U n n)(p))’ 33)
(Rn+1)(k) — (Rn+1)(0) _ D’l(M _ D)(RnJrl)(kfl)’ k=1,p,

where D is the diagonally lumped mass matrix,
Dii = Z Mij ,
j

Dij=0 fori # j.
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Note that we have chosen to use the mass-lumped matrix and not the diagdmhdiesf
cause it may be shown that convergence is assured on arbitrary (tetrahedral) meshes
the mass-lumped matrix is used [18]. An alternative to this approach would be to us
diagonally preconditioned conjugate-gradient technique [19], which also has favoure
convergence properties for this problem and avoids the need to store a pre-conditiol
matrix, although it is slightly more costly to implement due to the additional vector—vect
products that are required.

Since the other TG schemes, as well as the G/RK3 scheme, may also be express
linear combinations of the operatdr&ndL L, the implementation of this family of schemes
is straightforward and similar techniques may be used in all cases. By performing a Fou
analysis following [9], we may show analytically that all of the schemes remain third-ord
accurate when the mass-matrix is inverted approximately using one or more steps of Ja
at least for regular infinite meshes. For the multi-dimensional Euler equations, no analyt
proof of the order is given here, although the numerical estimate of the order presente
Subsection 4.1 shows that third order is still attained on regular meshes. Indeed, we
demonstrate that only two iteratioip = 2) are required to obtain solutions that are very
close to those given by exact matrix inversion. Figures 8 and 9 illustrate this by compat
dispersion and dissipation errors for the one-dimensional problem (the reader should
the vertical scale of Fig. 9).

3.2. Application to Linear and Bilinear Elements

The practical computation of the operatdrsindL L can be done element by element,

LiUM = > LU,

c,ieQ
LLi(UD = > LLU.
C,ieQ
10— R =T 1
0.8 | o _
06 I Q__
04 | O i
’ —— TTGC(0.01) (exact inversion) RN
O--1JacTTGC(0.01) N
3--B2JacTTGC(0.01)
X—X 6JacTTGC(0.01) o
02 f
0.0 1 L 1 L
0.0 0.2 0.4 0.6 0.8 1.0

p/n

FIG. 8. Dispersion error for nJacTTGC(0.01) scheme at GRL1.
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1.00003——=3

0.9995
oW al
. o
—— TTGC(0.01)
G--O1JacTTTGC(0.01)
09990 -  [3I--F12JacTTGC(0.01)
%—x 6JacTTGC(0.01)
0.9985 ; : p p
0.00 0.20 0.40 0.60 0.80 1.00

p/in

FIG. 9. Dissipation error for nJacTTGC(0.01) scheme at GHL1.
where
Li(UM|e = / o V-FdV,
Qc
LLi (UM = / di AV - FdV +/ ®yBV - FdV +/ ®;,CV - FdV.
Qe Q¢ Qo

However, their exact evaluation involves the continuous functietis"), A(UM), B(U™M),
andC(U") defined over each elemefit, recalling thatU" itself is a linear combination
of the test-functions (see Eq. (30)). For the Euler equations, the Jacobians and the
are complicated nonlinear functions of U and so it is convenient to make the followir
approximations:

o We use a product approximation to express the Huas a sum of test-functions,

F'x) =) @j(0F]. (34)
i

which gives

V- F'() =) FVe;(x).
j

e The Jacobians are taken to be constant over each element and are approxir
using the average value of the vertex valUgs j € Q2. Note that this approximation only
appears in thé L term.

The expressions fdr andL L can then be simpilified,

LiUMe= > FiOjle. (35)

jee
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LLiUMe= > (AF,-/ dix VO dV + BF,-/ iy VO, dV+CFj/ D,V dv>
jee Qe Qe Qe
= (A B,C) ( > R |c>, (36)
j€Qe
where® andV¥ are defined over each element as
Ol = / ®,VP; dV, (37)
Q¢
Wl :/ Vo (Vo) dV. (38)
Qc

For quadrilaterals in 2D, or prisms, pyramids or hexahedra in 3D, the test-functions
pearing in the above integrals may be expressed as bilinear or trilinear polynomials of
canonical coordinate$ of some reference element in computational space, whereas tt
can be fractional polynomials of the original coordinates x. They are therefore calcula
over the reference elemefit by using the transformation

R: flc—> Qc,
X — XZZXiq)i()?),
i

and (37) and (38) then become

@ij|c=/ & TVO;dV, (39)

Yijle= [ IPI7'TVO; VO TTdV, (40)

J&e
whereP = 2% is the Jacobian of the transformati® andT =|P|(PT) .

3.2.1. Linear formulation. In the case of triangular or tetrahedral elements, the tes
functions are linear functions of the coordinates and the transformBisntself linear
(i.e., P is constant). Consequentlyj,andV®; are constant over each element and can b
taken out of the integrals (39) and (40). Then we have

N;

DV,
where the 3« 1 matrix N; is the outward normal to the face opposite to ngdscaled by
the surface area of the fad;is the space dimension aM is the volume of the element.
The integral of the test function itself reduces to

Vo, = (41)

V.
/ <I>,-dV=I—°, VjeQ. (42)

c

wherel. is the number of vertices in the eleméht 3 for triangles, 4 for tetrahedra. Finally,
L andLLf take the simple forms

Ve
Li(Un)|c = I_(V ' F)c, (43)

LLiUMe = —%(A, B,C)(V - F)cNi, (44)
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where

(V- Fle=-5 (ZFN) (45)

jeSe

Although the expressions (43) and (44) correspond to the exact integration of (39) and (
we note that these expressions are exactly those used in our basic finite-volume solver

3.2.2. Biftri-linear formulation. In the case of bi/tri-linear elements such as quadrilat
erals, prisms, pyramids, and hexahedrandV ®; are no longer constant within each cell,
and so these cannot be taken out of the integrals (39) and (40). Their approximate i
gration is commonly performed using quadrature, although this can be expensive (sin
one-point quadrature is not considered as this leads to spurious solution modes, wher
full 2 x 2 x 2 quadrature would require nearly eight times as much work as the former); c:
must also be taken in order to maintain the essential property of discrete flux conservat
The solution adopted here is to consider both T [d@do be constant over each element, as
in the linear case. The approximation is based on the fact that TRiraate indeed constant
when the element is regular, that is, for parallelograms in 2D or parallelepipeds in 3D. |
irregular elements, we need to define some average of TRRdlenotedl and|P|. In
the present work, we have chosEn= T (Xxg) wherexg is the barycentre of the element.
Similarly, |P| is defined

/1dV= _|P|dV ~|P| [ dV.
Qc Qe

Qe
As we have arbitrarily chosefy, dV = I, we find
P = Ve/le.

In order to guarantee the conservation property (see the Appendix for the proof) we s
©j; into two terms,

O” |C — O(O)‘ 4 O(l)

c’

where
o, = /Q O VP;dV, (46)
@§}>|C=/Q o (VO — Vd;)dV, @7)
and
_ 1
Voj=_ [ Vo;dV=_ /TV@D dv
Q¢ Qc
We now define
pr— 1 — g ~
\Y% jz—T/ Vo dVv (48)
Ve Qe

and note that for regular elements

=Vo; = (VOj)py,

4\
o
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with
1
(Vcb,-)FV:_/ ®;dS (49)
Ve Joa.

For irregular elements with non-coplanar quadrilateral faces, we défie)ey to be an
approximation of the surface integral of (49). This involves triangulating the face, assu
ing linear variation of® over the triangle, and then taking the mean of the two possibl
triangulations [20]. We then approxima¥ed; by (V®j)ry in Eq. (46), and byW®; in

Eq. (47),
o7, ~ (/Q <I>idV) (VO))ev.

O(l) } ~ Tol(Jl)’

where®/}” is defined over the reference element,
e :/ @ (VO — |P|T Vd;)dV (50)
o
1 ~ ~
=/ o (vo;— = [ vo,dV)av. (51)
Qe IC e
In the same manne;; is approximated using and|P|,
Wijle > [P AT TT,
& =[ Vo,V dV.
e

\TJ.J, like OI(J), can be calculated once and for all for each element type, since it does
depend on the mesh coordinat&s.however, must be calculated for each element. Whe
replacing®j; |c and ¥;; | by their approximate expressions in Egs. (35) and (Bgxnd

LL; become

LiUMe =+ ( )(v F)Fv+ZFTO.,, (52)
LLi(UMe = —(A B. C>(Z T ) (53)
J

where
1
¥ P~y [ Fds
Ve Joa.

the latter being evaluated using an approach similar to that defined for (49) above.

In the case of regular elements such as parallelopipeds, expressions (52) and (53
the exact finite-element integrals appearing in Egs. (28) and (29). On irregular eleme
these expressions are only approximations of the exact finite-element formulation, but
numerical tests of the next section show that they do not appear to affect the quality of



354 COLIN AND RUDGYARD

solutionsin a significant manner, atleast for practical mesh resolutions. Following similar
guments, we have approximated the mass—maf@@i ®; dV) by (VC/IC)(fQCCDi ®;dV),
the expressions being identical for linear or regular, bilinear elements.

4. NUMERICAL RESULTS

4.1. Linear Test-Case

As afirst test-case for the numerical evaluation of our scheme, a Gaussian pulse of de!
is convected in a uniform velocity field in two or three dimensions. Note that this test
strictly equivalent to the three-dimensional version of the convection equation (1), sir
the Jacobian matrices are constant and the vector equations degenerate to a single
equation. In 3D, the initial solution reads

p = 1+ exp(—100r %),
U=u=us=1,
p 1 5
"= oo -p T2
where the pressurg is uniform over the whole domairy, = 1.4, andr denotes the radius
from the centre of the domain.

This pulse of density is initialized at time= 0 in the centre of the unit periodic box
(x € [0, 1]°) discretised byNP mesh points D =2 or 3), and thus recovers its initial
position at timen, n an integer.

We present in Fig. 10 the density profile at time 1 on a hexahedral mesh of Size :
calculated with TTGC(0.01). This figure shows the solution on a 1D cut in the direction
propagation, i.e., between points (0, 0, 0) and (1, 1, 1) of the unit cube. All calculations w
finite-element schemes are performed with the approximate inversion of the mass-me
as described above. The TTGC scheme is therefore denoted as 2JacTTGC when 2 J
iterations are performed, and similarly for the other schemes. The improvement obtaine
performing two iterations of the Jacobi method instead of one is obvious in this figure;
iterations offer an even better solution but at a much higher cost. For all the following rest
we have therefore used two Jacobi iterations as a compromise between cost and accu

Figure 11 compares the different schemes on the same mesh. We note that the dissip
and dispersion errors for third-order finite-element schemes are much smaller than tt
of the second-order Lax—Wendroff finite-volume scheme (FV/LW) [20] and the three-st
Runge—Kutta finite-volume scheme (FV/RK3). Clearly, the particularly poor results o
tained with the latter schemes are due to the relatively coarse mesh resolution of the p
TTGA4A is the most dissipative FE scheme followed by TTGC(0.01) and G/RK3, as expec
from Fig. 4. The phase accuracy on the other hand is quite similar for all FE schemes, as
be seen from Fig. 6. This calculation has also been carried out with different connectivit
on a perturbed mesh (tetrahedra, pyramids, and prisms) without any significant chang
the quality of the solution, as can be seen in Fig. 12. This perturbed mesh was gener
by randomly moving the mesh points of the regular grid within circles of maximal radit
0.225Ax. A 512 quad mesh is shown in Fig. 15 with the same level of perturbation and tl
solution obtained with this mesh is shown in Figs. 14 and 16. This calculation shows that
approximations used for bi/tri-linear elements do not negatively influence the solution il
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FIG. 10. Convection of a Gaussian pulse of density on &t&ixahedral mesh.
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FIG. 11. Convection of a Gaussian pulse of density on &t&ixahedral mesh.
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| G—©62JacTTGC(0.01) on hexahedra
3 —£12JacTTGC(0.01) on tetrahedra
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FIG. 13. Convection of a Gaussian pulse of density on a regular 51 quadrilateral mesh.
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20

19} T34 —— exact solution
Sy e FVLW

18} (9--6)2JacTTG4A
‘ & —E]2JacTTGC(0.01)

i | K—k2JacG/RK3

FIG. 14. Convection of a Gaussian pulse of density on a perturbed Sl quadrilateral mesh.

significant manner when irregular elements are used, at least for realistic mesh resolut
The result obtained with a hybrid mesh composed of hexahedra and prisms is qualitati
similar to that obtained on a non-hybrid mesh, indicating that the use of hybrid eleme
does not necessarily degrade the solution accuracy for unsteady calculations.

In order to obtain a more quantitative comparison of the different schemes, we have
undertaken tests to compute their approximate orders of accuracl., Fieem of the error
versus the mesh spacingx is shown in Figs. 17 and 18, for both perturbed and regule
quadrilateral meshes of sizes?1312, 512, 101%, and 15%. Similar tests were undertaken
for triangles, using the same node distribution, as shown in Figs. 19 and 20. Table | g
the slope of the regression line which best fits the error for all of the mesh sizes conside

TABLE |
Order Measurement for the Convection of a Gaussian Pulse
of Density in Two Dimensions

2JacTTGC  2JacTTGC

Scheme LW  2JacTTG4A (0.01) (0.05) 2JacG/RK3
Regular quad 0.8 2.7 35 3.7 3.6
Perturbed quad 0.74 2.1 1.3 1.7 0.87
Regular triangles 0.8 2.7 3.1 3.0 3.0

Perturbed triangles 0.8 2.4 1.8 2.1 14
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FIG. 15. A 512 perturbed quad mesh: (a) whole mesh, (b) detail.

Since we consider relatively coarse meshes as well much finer meshes, the slope me
interpreted as an average rate of convergence over a realistic range of mesh resolu
rather than an estimate of the orderas— 0. However, in some cases (notably the regula
mesh computations) the results indicate that the former is a good indication of the latte

On regular meshes, TTGC schemesyfot 0.01 andy = 0.05 and G/RK3 retain third-
order on triangles and even higher on quadrilaterals. The TTG4A scheme performs slig
worse (with a computed order of 2.7) and the LW scheme gives a surprisingly low order
0.8. Note, however, that a regression fitting using the three finest meshes yields a valt
1.3 for LW and 3.9 for TTG4A on quadrilaterals, indicating that the coarser meshes do |
give a good indication of the error convergence for the rapidly varying initial conditior
that were used in this test.

On perturbed meshes we find that while the LW scheme retains its order, the FE sche
give reduced convergence rates. The loss in order is smaller for TTG4A and more ¢
nounced for the other FE schemes, especially for G/RK3 on quadrilaterals, where
convergence curve flattens on the two finest meshes. We believe that this loss of accura
due to the creation of high-frequency oscillations on perturbed meshes which are dampe
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FIG.16. Convection of a Gaussian pulse on a perturbédjtiad mesh: (a) exact solution, (b) LW, (c) TTG4A,
(d) TTGC(0.01), (e) TTGC(0.05), (f) G/RKS.

dissipative schemes like LW or TTG4A, but less so by TTGC or G/RK3. This is illustrate
in Figs. 13 and 14 on a regular and perturbetiish: although solutions on the perturbed
mesh show high frequency oscillations, the pulse is still accurately described. This is
illustrated in the 3D view (Fig. 16) of the same®Fderturbed mesh: the LW, TTG4A, and

TTGC(0.05) are nearly free of these high-frequency oscillations, while TTGC(0.01) a
G/RK3 show a nearly unifrom high-frequency perturbation. It can also be seen that des
the relatively good mesh resolution, the LW scheme displays a low frequency phase e
(illustrated by the large undershoot behind the pulse). The results for the two TTGC sche
also illustrate how the coefficieptdirectly measures the dissipation of the scheme: resul
on perturbed meshes are better with TTGC(0.05) than with TTGC(0.01) simply because
former damps the high frequency perturbations more effectively, while the low frequer
resolution remains similar. For LES, we shall see that there is a fine balance betweer
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FIG. 17. L2 error versus mesh spacing on regular quadrilateral meshes for convection of a Gaussian puls

need to have some dissipation at high frequencies but not to overly dissipate these mc
Indeed, practical computations indicate that it is wise to have some dissipation in orde
avoid any nonlinear instabilities that may become apparent before the turbulent visco
itself comes into play.

4.2. Nonlinear Test

In this second test, an incompressible, rotational vortex is combined with the unifo
convection of the previous test-case in the same domain. The pressure and the densit

— FVILW
O-2JacTTG4A
4 - -E12JacTTGC(0.01)
10 ¢ G—2JacTTGC(0.05) E
¥ —¥2JacG/RK3

10° L
107

10™

FIG. 18. L2 error versus mesh spacing on perturbed quadrilateral meshes for convection of a Gaussian pt
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FIG. 19. L2 error versus mesh spacing on regular triangular meshes for convection of a Gaussian pulse

uniform over the domain. The initial solutiontat 0 reads

P = po,
U = Wgexp(—((X — X0) + (Y — Y0)?)/72),

ow
u; = uo<l— )
ay

(1+5)
U, =up 1+ — |,
aX

10 R = g 3
o e ]
s |
10° :ET//’@/ | 1
50/ @ —— FVAW
[ @ Cr(02JacTTG4A 1
i - -E12JacTTGC(0.01)
10° | & —&>2JacTTGC(0.05) 4
$—¥2JacG/RK3 ]
’0-5 I
10° 10™

FIG. 20. L2 error versus mesh spacing on perturbed triangular meshes for convection of a Gaussian pul:
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FIG. 21. Convection of a vortex on a perturbed®2exahedral mesht, = 0.2, © =0.25/+/2.

usz = Up,

2
_ 2 ¥
P=Po— PoUo?,

1
= Tp—l) + E(u§+u§+u§),
with po=1, up=1, y =14, pp= ,Oo/Mg)/, Mo =0.125 xg=Yyp=0.5.

This vortex should be convected without dissipation, and so we expect the solutior
timet =n (n integer) to correspond to the solution at titne 0. However, the Jacobians
of the Euler fluxes are no longer constant, since a rotation of the fluid is involved. Havi
locally linearised the Euler equations as in the previous section (i.e., using the prod
approximation for the fluxes and assuming that the Jacobians are constant within each ¢
this test should demonstrate to what extent this assumption perturbs the solution.

Figure 21 shows the second velocity component along the line (0, 0.5, 0)-(1, 0.5, 0
timet =1 for ¥y =0.2 andr =0.25/+/2 in the case of a perturbed 2tiexahedral mesh.
We see that TTGC(0.01) and TTG4A give comparable results, while the FV/LW schel
already shows an important dissipation error. Figure 22 shows the solutienlzadlong the
same cut but for a vortex with narrower cross-section (with approximately 2/3 the resolut
of the previous vortex) and the same velocity amplitubig=£ 0.155 andr = 0.16/+/2). As
this vortex contains higher Fourier modes, the dissipative error is more evident with TTG
than with TTGC(0.01), while the FV/LW scheme has totally dispersed and dissipated
vortex. On this test, G/RK3 and TTGC(0.05) give results very similar to TTGC(0.01).

4.3. Homogeneous Isotropic Turbulence (HIT) Decay without Viscous Terms

This test is a basic test for unsteady LES computations. A synthetic three-dimensic
turbulent flow (initialised with a Passot—Pouquet spectrum) is advanced in time on a peric
212 hexahedral mesh. The CFL number is 0.7 and the mean and maximum Mach num|
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FIG. 22. Convection of a vortex on a perturbed®2texahedral meshe, = 0.155, t =0.16/+/2.

attimet =0 are 0.05 and 0.12, which are typical values for low Mach number tests. We
fine a convective CFL number CEay ~ 1_“:'hj°aﬂhCFL, where CFLlx (Ju| + ¢)A¢/Ay is the
Courant Friedrich number based on the velogity+ ¢ of the fastest acoustic waves in the
simulation, andA is some length scale associated with the smallest element of the me
In this case the mean and maximum convective CFL numbers are approximately O.
and 0.075.

In this first test we do not make use of an LES model, nor do we consider the eff
of laminar viscosity, so the calculation can be performed by solving the Euler equatio
Consequently, we should see a progressive accumulation of energy and vorticity at |
frequencies. In particular, the theory of turbulence [21] predicts a (monotonic) exponen
growth of enstrophy as time increases, where enstrophy is defined as

enstrophy= /(V x u)?dV.
\

Figures 23 to 27 show the time evolution of the mean enstrophy and kinetic energy
the various schemes described above (curves in solid line). We see that TTG4A dissif
enstrophy monotonically (after the initial growth), while TTGC and G/RK3 lead to th
exponential growth predicted by the theory. FV/LW also predicts the growth but with
important decrease of enstrophy prior to it.

This test already indicates that TTG4A, and to a lesser extent FV/LW and TTGC(0.0
may be too dissipative to carry out LES calculations, as their intrinsic dissipation alrec
acts as an ad hoc LES viscosity model. This behaviour is in line with the Fourier analysi
Subsection 2.3, which shows that the TTGC scheme has substantially less high frequ
dissipation for low CFL numbers. Since turbulent motion is convected numerically at t
convective CFL number defined above, we may expect such behaviour for all low Me
number cases (say Maeh0.3). It is the acoustic waves that are convected at the tru
CFL number, and it is only high frequency acoustic waves that will be adversely effec
by large dissipative and dispersive errors, although these are often less important in-
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FIG. 23. HIT test for FV/LW scheme.

computations. Even then the time step is limited by the smallest elements of the mesh
S0 acoustic waves are effectively convected at low CFL numbers over the majority of
unstructured mesh for many practical applications.

4.4. Homogeneous Isotropic Turbulence Decay with LES Viscosity Model

Starting from the same solution and the same mesh as above, we now add the lan
and turbulent viscosity terms. The turbulent eddy viscosity model employed is the filter
Smagorinsky model [22]. Since we are using a (bi-)linear finite-element approximati
for which viscous terms can not be approximated to third-order accuracy [23], we me
use of a standard second-order approximation for these terms (using one-point quadr:

107" enstrophy
kinetic energy
107 |
10° |
—— without LES model (test 1)
— — - with LES model (test 2)

0

10 10’ 10

FIG. 24. HIT test for 2JacTTG4A scheme.
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FIG. 25. HIT test for 2JacTTGC(0.01) scheme.

for simplicity), although we retain third-order for convective terms. This approximation
justified in the context of LES calculations where important simplifications have alrea
been used to derive the LES model itself.

In Figs. 23 to 27 we present the evolution in time of mean enstrophy and kinetic ene
for this second test (dashed lines). As the initial solution contains no energy at the hig}
frequencies, vorticity and energy are fed into these modes through the energy cas
mechanism, which explains the initial growth in enstrophy from time0 tot =6. As
vorticity at high frequencies grows, turbulent viscous terms start to become effective
dissipating these quantities. We note that theoretical [13] and experimental results pre
at~14 law for the asymptotic decay in kinetic energy.

107 L enstrophy R 1
LA
kinetic energy
10% © ™ 1
10° ]
—— without LES model (test 1)
— — - with LES model (test 2)

0 1

10 10

FIG. 26. HIT test for 2JacTTGC(0.05) scheme.
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FIG. 27. HIT test for 2JacG/RK3 scheme.

By comparing the evolution of mean enstrophy and kinetic energy with and witho
LES viscous terms it is evident that the dissipation rate of kinetic energy is not entire
dictated by the LES viscosity model, as it would be ideally. Instead, it is dependent on
numerical dissipation that is inherent to the convective scheme. For G/RK3, TTGC(0.C
and TTGC(0.05), which show good agreement with theory, it can be concluded that
LES model is responsible for most of dissipation of energy, and not numerical viscos
Meanwhile, the results for TTG4A show nearly identical evolutions of enstrophy and kine
energy for both the viscous and inviscid tests, indicating that the LES model has a marg
effect compared to numerical dissipation. This is confirmed by the evolution of the me
turbulent viscosity in Fig. 28: the mean level for TTG4A is significantly smaller than fc

0.0015 T T T
N e FVAW
(G—©2JacTTG4A
\ F—H12JacTTGC(0.01)
* —3k2JacG/RK3

00010 [ | .\ 1

0.0005

0.0000
0

FIG. 28. Time evolution of mean turbulent viscosity for HIT test with turbulent viscosity model.
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TABLE Il
Total CPU Time per lteration on a 212 Periodic Mesh

Hexahedra Hexahedra Tetrahedra Tetrahedra
Scheme CPUtime (ins) CPUtime/LWtime CPUtime(ins) CPU time/LW time

FV/ILW 0.82 1. 1.57 1.
2JacTTG4A 2.23 2.7 3.00 1.9
2JacTTGC 2.04 25 3.02 1.9
4JacTTGC 2.36 2.9 3.5 2.2
nJacTTGC 1.73-0.15h 2.1+0.1n 2.55+0.23"h 1.6+0.15:
2JacG/RK3 2.44 3.0 4.00 25

other schemes. The FV/LW scheme shows intermediate behaviour between these two tr
TTGC(0.01), TTGC(0.05), and G/RK3 give approximatively&® law for the kinetic
energy decay while TTG4A and FV/LW give powers-6i.55 and—1.63, respectively,
which again indicates excessive dissipation.

This second test confirms that G/RK3 and TTGC(0.01) behave much better than FV/
and that TTG4A is definitely too dissipative for LES applications. The difference observ
between TTGC(0.01) and TTGC(0.05) indicates that as the paramésancreased, the
scheme becomes more dissipative at high frequencies and it too becomes less su
for LES.

5. COMPUTATIONAL COST

In order to give an approximate idea of computational cost, we measure the total C
time per iteration for the different schemes studied on thgp2tiodic mesh. Note that all
of the schemes were developed within the same computational code, and so all com
components are shared. By the same token, no optimisations that npaytloelar to a
given scheme have been performed, although we are reasonably confident that in most
the figures give a realistic assessment of relative cost.

Table Il shows CPU times for hexahedral and tetrahedral elements. The third and f
columns give CPU times normalised by the cost of the basic FV/LW scheme describe:
[15]. For both element types we see that the TG schemes (with 2 Jacobi iterations) are 1
3times slower than FV/LW, which indicates that the improvement brought by these schel
can be obtained at a very reasonable cost for practical calculations. Tetrahedral calcula
are found to be 1.3 (for 2JacTTG4A) to 1.9 (for FV/LW) slower than the calculation c
hexahedra for the same number of unknowns: this is explained by the increased nur
of cells treated with tetrahedra (40000 versus 8000) since each hexahedron is replace
5 tetrahedra for the regular grids considered here. TTGC can be seen to be substan
faster than G/RK3 (there is between 20 and 32% of overhead for G/RK3), while TTGC &
TTGA4A have comparable CPU times. Since TTGC(0.01) and G/RK3 give similar solutic
on simple test cases, TTGC will be preferred on practical calculations for its lower cost
well as offering increased robustness on irregular complex meshes.

6. CONCLUSION AND FUTURE WORK

In this article the construction of various Taylor—Galerkin (TG) finite-element schem
has been described and a new TG scheme, TTGC, has been proposed. Our goal w
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develop practical schemes for LES, and so methods that are particularly suitable for
plementation within an unstructured parallel solver have been derived. This involved
proximation of the integrals that occur in the discrete space-time equations in a manner
is substantially cheaper than well-known quadrature techniques, while preserving disc
conservation. The resulting schemes recover the exact finite-element formulation on reg
elements, and tests carried out on perturbed elements indicate that, although approxir
the method still gives good results.

Using these formulations, the TG schemes considered have been demonstrated on't
dimensional linear and nonlinear advection test-cases and were seen to give substan
better results than the second-order Lax—Wendroff and centred three-step Runge—K
schemes. Tests were also performed for all basic element types (namely quadrilate
triangles, tetrahedra, prisms, pyramids, and hexahedra) and indicate similar propertie
all of these, as well as for hybrid meshes. Mesh refinement studies indicate that the
schemes presented do give third-order accurate solutions for convective terms on reg
meshes, although decreased orders are evident on perturbed meshes, especially for tt
dissipative of them (G/RK3 and TTGC(0.01)). A detailed study of this phenomenon h
not been carried out, as this is beyond the scope of the present paper—our aim here w
describe a practical method with minimal computational overhead compared with exist
low-order schemes.

For the LES applications that are of primary interest to us, we have established that
ETG and TTG4A schemes are too dissipative, despite the fact that they offer improy
phase accuracy over standard second-order schemes. Our new TG scheme, TTGC
sentially retains the same structure as standard TG schemes although it results in I
dissipative errors at high frequencies, comparable to those given by the three-step Rul
Kutta—Galerkin scheme (G/RK3). In essence, the new approximation offers a compron
between existing TG schemes and G/RK3 and, at least for the problems we are intere
in, strikes a balance between the dissipation that is needed to maintain nonlinear stabilit
irregular meshes, the requirements of LES, and the need to minimize computational cc

Future development will be driven by activities on LES calculations of turbulent con
bustion in complex geometries, which will be reported elsewhere.

APPENDIX: CONSERVATION PROPERTY OF TG SCHEMES

We present here the practical definition of conservation adopted in our work and the pr
that our schemes fulfill this criterion. The definition of conservation involves consistent
approximating the integral form of the PDE over the domain

t-+At t+At
/ /uth dt:—/ / FdsSdt (54)
t Q t Q2

For our finite-element discretisation, we shall demand that

Un+l_un -
/Tdvz_/ FdS (55)
Q I

where [, , F d Sis some (as yet undefined) approximation of the global flux integral.
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For the schemes of interest,

Un+1 un U n+1 n
dv = / @, Vi R 56
|5 > ( ) =Y VR (56)
with V; the mass-lumped coefficient of node
V:/CD-dV: Mi; . 57
i o i zj: ij ( )
We note that

Zv,-R,—““:ZZM.,R”+l Z/ R dV = ZH” SN OH!
j

C ieQe

o (58)

whereH"|. is the restriction to cell ¢ of the RHS operator of the TG scheme considere
The condition (55) then reads

Z(Z'ﬂ) [ Fas (59)

ieQc

and since the mesh is arbitrary, and assuming our approximate surface integrals canc
across internal faces,

H'| = [ Fds (60)
LA

The RHS operatoH;" is a linear combination of the operatdrsandL L. A sufficient
condition onL andLL for Egs. (60) and (59) to be satisfied is then

S L >|c—/ Fds 61)

ieQc

> LLiUMe=0. (62)

ieQe

In the linear case, it is straightforward to show that by summing Eq. (43) over the no
of the mesh gives Eq. (61), where

/ FAS=V.(V:-F)c=V(V:F)py. (63)
02

In the bi/tri-linear case, summing Eqg. (52) over the nodes of the element gives

D> LU = Ve(V - F>Fv+ZF T(ZQ,)

ieQe

The first term on the right-hand side is the finite-volume divergence term obtained in-
linear case. Summing Eq. (51) over the nodes of the element proves that the second te
parentheses cancels out,

Zi:@u =/éc<2ijd>i>(vq>,- —Ilc/écijdv) dv
=/fzv<1>jo|v—llc</§2 1dv)</évq>jdv>_
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As we arbitrarily chosq’éc = I, the right-hand side is zero and Eq. (61) is satisfied.

Finally, equality (62) is proven by using definition (36) and (38).af,
T

S L= aeo| YR |

e j S

Vo Y vV
i
As) ; Vd; =0, (62) is satisfied, and the scheme is conservative for bi/tri-linear elemen
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